\(\int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3 (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1207]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 43, antiderivative size = 231 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {4 a^3 (5 A+9 B+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 (35 A+21 B+13 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {4 a^3 (140 A+147 B+106 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)}}+\frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (7 B+6 C) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 A+9 B+7 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

-4/5*a^3*(5*A+9*B+7*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d
+4/21*a^3*(35*A+21*B+13*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2
))/d+2/7*C*(a+a*cos(d*x+c))^3*sin(d*x+c)/d/cos(d*x+c)^(7/2)+2/35*(7*B+6*C)*(a^2+a^2*cos(d*x+c))^2*sin(d*x+c)/a
/d/cos(d*x+c)^(5/2)+2/15*(5*A+9*B+7*C)*(a^3+a^3*cos(d*x+c))*sin(d*x+c)/d/cos(d*x+c)^(3/2)+4/105*a^3*(140*A+147
*B+106*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.186, Rules used = {4197, 3122, 3054, 3047, 3100, 2827, 2720, 2719} \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {4 a^3 (35 A+21 B+13 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {4 a^3 (5 A+9 B+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (5 A+9 B+7 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^3 (140 A+147 B+106 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)}}+\frac {2 (7 B+6 C) \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^3}{7 d \cos ^{\frac {7}{2}}(c+d x)} \]

[In]

Int[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-4*a^3*(5*A + 9*B + 7*C)*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^3*(35*A + 21*B + 13*C)*EllipticF[(c + d*x)/2
, 2])/(21*d) + (4*a^3*(140*A + 147*B + 106*C)*Sin[c + d*x])/(105*d*Sqrt[Cos[c + d*x]]) + (2*C*(a + a*Cos[c + d
*x])^3*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + (2*(7*B + 6*C)*(a^2 + a^2*Cos[c + d*x])^2*Sin[c + d*x])/(35*a*
d*Cos[c + d*x]^(5/2)) + (2*(5*A + 9*B + 7*C)*(a^3 + a^3*Cos[c + d*x])*Sin[c + d*x])/(15*d*Cos[c + d*x]^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3122

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n +
1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C
 - B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x]
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])

Rule 4197

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
 + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*
Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}
, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a+a \cos (c+d x))^3 \left (C+B \cos (c+d x)+A \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx \\ & = \frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 \int \frac {(a+a \cos (c+d x))^3 \left (\frac {1}{2} a (7 B+6 C)+\frac {1}{2} a (7 A-C) \cos (c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx}{7 a} \\ & = \frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (7 B+6 C) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 \int \frac {(a+a \cos (c+d x))^2 \left (\frac {7}{4} a^2 (5 A+9 B+7 C)+\frac {1}{4} a^2 (35 A-7 B-11 C) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{35 a} \\ & = \frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (7 B+6 C) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 A+9 B+7 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 \int \frac {(a+a \cos (c+d x)) \left (\frac {1}{4} a^3 (140 A+147 B+106 C)+\frac {1}{4} a^3 (35 A-42 B-41 C) \cos (c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{105 a} \\ & = \frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (7 B+6 C) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 A+9 B+7 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 \int \frac {\frac {1}{4} a^4 (140 A+147 B+106 C)+\left (\frac {1}{4} a^4 (35 A-42 B-41 C)+\frac {1}{4} a^4 (140 A+147 B+106 C)\right ) \cos (c+d x)+\frac {1}{4} a^4 (35 A-42 B-41 C) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{105 a} \\ & = \frac {4 a^3 (140 A+147 B+106 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)}}+\frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (7 B+6 C) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 A+9 B+7 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {16 \int \frac {\frac {5}{8} a^4 (35 A+21 B+13 C)-\frac {21}{8} a^4 (5 A+9 B+7 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{105 a} \\ & = \frac {4 a^3 (140 A+147 B+106 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)}}+\frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (7 B+6 C) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 A+9 B+7 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {1}{5} \left (2 a^3 (5 A+9 B+7 C)\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{21} \left (2 a^3 (35 A+21 B+13 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {4 a^3 (5 A+9 B+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 (35 A+21 B+13 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {4 a^3 (140 A+147 B+106 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)}}+\frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (7 B+6 C) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 A+9 B+7 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 13.23 (sec) , antiderivative size = 1692, normalized size of antiderivative = 7.32 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\cos ^{\frac {11}{2}}(c+d x) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-\frac {(-25 A-36 B-28 C+5 A \cos (2 c)) \csc (c) \sec (c)}{20 d}+\frac {C \sec (c) \sec ^4(c+d x) \sin (d x)}{14 d}+\frac {\sec (c) \sec ^3(c+d x) (5 C \sin (c)+7 B \sin (d x)+21 C \sin (d x))}{70 d}+\frac {\sec (c) \sec ^2(c+d x) (21 B \sin (c)+63 C \sin (c)+35 A \sin (d x)+105 B \sin (d x)+130 C \sin (d x))}{210 d}+\frac {\sec (c) \sec (c+d x) (35 A \sin (c)+105 B \sin (c)+130 C \sin (c)+315 A \sin (d x)+378 B \sin (d x)+294 C \sin (d x))}{210 d}\right )}{A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)}-\frac {5 A \cos ^5(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}-\frac {B \cos ^5(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}-\frac {13 C \cos ^5(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{21 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}+\frac {A \cos ^5(c+d x) \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x))}+\frac {9 B \cos ^5(c+d x) \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x))}+\frac {7 C \cos ^5(c+d x) \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x))} \]

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^(11/2)*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(-1/2
0*((-25*A - 36*B - 28*C + 5*A*Cos[2*c])*Csc[c]*Sec[c])/d + (C*Sec[c]*Sec[c + d*x]^4*Sin[d*x])/(14*d) + (Sec[c]
*Sec[c + d*x]^3*(5*C*Sin[c] + 7*B*Sin[d*x] + 21*C*Sin[d*x]))/(70*d) + (Sec[c]*Sec[c + d*x]^2*(21*B*Sin[c] + 63
*C*Sin[c] + 35*A*Sin[d*x] + 105*B*Sin[d*x] + 130*C*Sin[d*x]))/(210*d) + (Sec[c]*Sec[c + d*x]*(35*A*Sin[c] + 10
5*B*Sin[c] + 130*C*Sin[c] + 315*A*Sin[d*x] + 378*B*Sin[d*x] + 294*C*Sin[d*x]))/(210*d)))/(A + 2*C + 2*B*Cos[c
+ d*x] + A*Cos[2*c + 2*d*x]) - (5*A*Cos[c + d*x]^5*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTa
n[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - Ar
cTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]
*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2
]) - (B*Cos[c + d*x]^5*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x
)/2]^6*(a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d
*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[C
ot[c]]]])/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (13*C*Cos[c + d*x]^5*Csc[
c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])
^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[
-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d*(A + 2*C +
2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) + (A*Cos[c + d*x]^5*Csc[c]*Sec[c/2 + (d*x)/2]^6*(a
+ a*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x +
 ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x +
ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + A
rcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^
2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d*(A + 2*C + 2*B*Cos[c + d*x] +
A*Cos[2*c + 2*d*x])) + (9*B*Cos[c + d*x]^5*Csc[c]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + B*Sec[c + d
*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan
[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x
 + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[
c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x +
 ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(10*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])) + (7*C*Cos[c +
 d*x]^5*Csc[c]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((Hypergeom
etricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x
 + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^
2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTa
n[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]
]))/(10*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1069\) vs. \(2(263)=526\).

Time = 3.79 (sec) , antiderivative size = 1070, normalized size of antiderivative = 4.63

method result size
default \(\text {Expression too large to display}\) \(1070\)

[In]

int(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-16*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(1/4*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(
1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^
(1/2))+1/8*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d
*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/8*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/
2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-El
lipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+1/8*C*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2
)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*s
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+1/5*(1/8*B+3/8*C)/(8*si
n(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*sin(1/2*d*x+1/2*
c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*EllipticE(cos(1/2*d*x+1/2*
c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1
/2*c)^2*cos(1/2*d*x+1/2*c)-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d
*x+1/2*c)^2)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(1/8*A+3/8*B+3/8*C)*(-1/6*cos(1/2*d*x
+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(
cos(1/2*d*x+1/2*c),2^(1/2)))+(3/8*A+3/8*B+1/8*C)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1
/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.22 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (35 \, A + 21 \, B + 13 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (35 \, A + 21 \, B + 13 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (5 \, A + 9 \, B + 7 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (5 \, A + 9 \, B + 7 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (21 \, {\left (15 \, A + 18 \, B + 14 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} + 5 \, {\left (7 \, A + 21 \, B + 26 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 21 \, {\left (B + 3 \, C\right )} a^{3} \cos \left (d x + c\right ) + 15 \, C a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{105 \, d \cos \left (d x + c\right )^{4}} \]

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

-2/105*(5*I*sqrt(2)*(35*A + 21*B + 13*C)*a^3*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*
x + c)) - 5*I*sqrt(2)*(35*A + 21*B + 13*C)*a^3*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(
d*x + c)) + 21*I*sqrt(2)*(5*A + 9*B + 7*C)*a^3*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0
, cos(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2)*(5*A + 9*B + 7*C)*a^3*cos(d*x + c)^4*weierstrassZeta(-4, 0, w
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (21*(15*A + 18*B + 14*C)*a^3*cos(d*x + c)^3 + 5*(7
*A + 21*B + 26*C)*a^3*cos(d*x + c)^2 + 21*(B + 3*C)*a^3*cos(d*x + c) + 15*C*a^3)*sqrt(cos(d*x + c))*sin(d*x +
c))/(d*cos(d*x + c)^4)

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(1/2)*(a+a*sec(d*x+c))**3*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)

Mupad [B] (verification not implemented)

Time = 23.39 (sec) , antiderivative size = 436, normalized size of antiderivative = 1.89 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,\left (A\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+3\,A\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{d}+\frac {2\,B\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {\frac {2\,C\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7}+\frac {6\,C\,a^3\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5}+2\,C\,a^3\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+2\,C\,a^3\,{\cos \left (c+d\,x\right )}^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {6\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {6\,B\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^3*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

(2*(A*a^3*ellipticE(c/2 + (d*x)/2, 2) + 3*A*a^3*ellipticF(c/2 + (d*x)/2, 2)))/d + (2*B*a^3*ellipticF(c/2 + (d*
x)/2, 2))/d + ((2*C*a^3*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2))/7 + (6*C*a^3*cos(c + d*x)*s
in(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/5 + 2*C*a^3*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-
3/4, 1/2], 1/4, cos(c + d*x)^2) + 2*C*a^3*cos(c + d*x)^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)
^2))/(d*cos(c + d*x)^(7/2)*(1 - cos(c + d*x)^2)^(1/2)) + (6*A*a^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos
(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*A*a^3*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4
, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (6*B*a^3*sin(c + d*x)*hypergeom([-1/4, 1/
2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*a^3*sin(c + d*x)*hypergeom([-3/
4, 1/2], 1/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*a^3*sin(c + d*x)*hypergeom
([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2))